TAN Shutang

Release time :2020-11-24

Shutang Tan, Ph.D., Professor, Principal Investigator.



2020–present  Professor, Principal Investigator, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China

2015–2020  Postdoctoral researcher, Institute of Science and Technology, Austria

2009–2015  Ph.D., Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences

2005–2009  B.S., School of Life Science, Shandong University



Plants have evolved high plasticity in their post-embryonic growth and development owing to their sessile lifestyles. This is ensured by complex molecular networks, requiring the interplay between different signalling pathways. Trained as a plant biologist since my Ph.D. study, I have always been fascinated by plants’ ability to adapt to various harsh environmental conditions. The Tan laboratory at University of Science and Technology of China focuses on plant cell biology and root development. The ambition is to generate fundamental understandings of the biochemical, cellular and genetic principles that underlie the behaviour of plant biological systems.

Funded first by an EMBO Long-Term Fellowship and an IST Fellowship (Marie Currie COFUND), and then by an ERC Advanced Grant (to Prof. Jiří Friml), I did my postdoctoral research on the non-transcriptional effect of the plant hormone salicylic acid (SA) in Prof. Jiří Friml lab at IST Austria. With the advantage of state-of-the-art microscopy and live-imaging approaches, I identified a novel target of SA and uncovered the molecular mechanism underlying the developmental role of SA (Tan et al., Current Biology, 2020). Meanwhile, inspired by this work and an experience of using painkillers to treat my toothache, I exhibited strong interest in the function and mechanism of non-steroid anti-inflammatory drugs (NSAIDs, so-called “painkillers”), such as aspirin and ibuprofen, which have been developed based on the structure of SA. Indeed, SA is an ancient drug, and it was even used for curing fever and pain thousands of years ago all over the world. Though the mechanism for NSAIDs releasing inflammation seems solved, i.e. targeting COX-2 to inhibit prostaglandin biosynthesis, there had been no study revisiting the activity of NSAIDs in plants. Thus, I tested plants’ sensitivity to NSAIDs, and discovered a striking root twisted phenotype caused by this class of drugs. It was uncovered that NSAIDs target directly TWISTED DWARF1/FKBP42, which might explain for part of their functions (Tan et al., Cell Reports, 2020).

Another major topic of the Tan group is the molecular regulation of PIN-FORMED (PIN)-mediated auxin transport. PINs are a family of auxin efflux carriers, and they are under multilevel regulations, including post-translational modification (Tan et al., Molecular Plant, 2020). In the field of auxin biology, it was thought for more than one decade that PDK1 phosphorylates PINOID, an AGC kinase responsible for PIN phosphorylation and polarity in plants. However, the exact role of PDK1 is unclear, without well-characterised knock-out genetic materials. By multiple genetic approaches, it was found that PDK1 has pleiotropic functions independently of PINOID. Instead, PDK1 phosphorylates a small sub-clade of AGC kinases, D6PKs, to phosphorylate PIN transporters. Notably, both PDK1 and D6PKs are basal localized, in a lipid-dependent manner, presenting a phosphoswitch for regulating PIN-mediated auxin transport and plant development (Tan et al., Nature Plants, 2020). This work adds a crucial piece to the puzzle of PIN-centred auxin transport framework.



1. Endomembrane trafficking & auxin: The ESCRT-mediated vacuolar degradation pathway.

2. Reversible protein phosphorylation & auxin: protein kinases and phosphatases involved plant developments, as well as their functions and regulations.

3. Salicylic acid & auxin in plant development: the developmental role of salicylic acid (SA) in plants, especially via crosstalk with the auxin network.

4. Novel compounds & auxin: Novel bioactive natural or synthetic compounds involved in auxin biosynthesis, signaling and transport, especially PIN-mediated polar auxin transport.



(#, contributed equally to the article; *, corresponding author).


26. Yanbo Mao*, and Shutang Tan*Functions and Mechanisms of SAC Phosphoinositide Phosphatases in Plants. Frontiers in Plant Science. 2021,12: 803635. (Review).

DOI: 10.3389/fpls.2021.803635 

25. Yakun Peng, and Shutang Tan*.TMK: A Crucial Piece of the Acid Growth Puzzle. Molecular Plant. 2021, 14(12): 1982–1984. (Spotlight).

DOI: PMID: 34813950

24. Yanbo Mao*, and Shutang Tan*. Pollen hydration: A tale of two peptides. Molecular Plant. 2021, 14(7): 1049. (Editor’s Highlight).


23. Wei Kong#, Shutang Tan#, Qing Zhao, De-Li Lin, Zhi-Hong Xu, Jiří Friml, and Hong-Wei Xue*. mRNA Surveillance Complex PELOTA-HBS1 Regulates Phosphoinositide-Dependent Protein Kinase1 and Plant Growth. Plant Physiology. 2021, 186 (4): 2003-2020.

DOI: PMID: 33930167

22. Cheng-Wu Liu*, and Shutang Tan*. Nitrate signaling: a translator between nitrate perception and calcium signaling.Molecular Plant. 2021, 14(5): 718-719.(Editor’s Highlight).


21. Matouš Glanc#, Kasper Van Gelderen#, Lukas Hörmayer, Shutang Tan, Satoshi Naramoto, Xixi Zhang, David Domjan, Ludmila Včelařová, Robert Hauschild, Alexander Johnson, Edward de Koning, Maritza van Dop, Eike Rademacher, Stef Janson, Xiaoyu Wei, Gergely Molnár, Matyáš Fendrych, Bert De Rybel, Remko Offringa,* and Jiří Friml*. AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells. Current Biology. 2021, 31(9): 1918-1930.

DOI: PMID: 33705718

20. Madhumitha Narasimhan, Michelle Gallei, Shutang Tan, Alexander Johnson, Inge Verstraeten, Lanxin Li, Lesia Rodriguez, Huibin Han, Ellie Himschoot, Ren Wang, Steffen Vanneste, Judit Sánchez-Simarro, Fernando Aniento, Maciek Adamowski, and Jiří Friml*. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. Plant Physiology. 2021, 186(2): 1122-1142.

DOI: 10.1093/plphys/kiab134. PMID: 33734402

19. Shutang Tan*. Action mode of NPA: direct inhibition on PIN auxin transporters. Molecular Plant. 2021, 14(2): 199. (Editor’s Highlight).


18. Shutang Tan*. Repressors for auxin responsive transcriptional activators.Molecular Plant. 2021, 14(1): 8. (Editor’s Highlight).


17. Shutang Tan, Christian Luschnig, and Jiří Friml*. Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signalling. Molecular Plant. 2021. 14(1): 151-165. (Review).

DOI: PMID: 33186755

16. Krisztina Ötvös, Marco Marconi, Andrea Vega, Jose O’Brien, Alexander Johnson, Rashed Abualia, Livio Antonielli, Juan Carlos Montesinos López, Yuzhou Zhang, Shutang Tan, Candela Cuesta, Christina Artner,  Eleonore Bouguyon, Alain Gojon, Jirí Friml, Rodrigo A. Gutiérrez, Krzysztof Wabnik,* and Eva Benková*. Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport.The EMBO Journal. 2021, 40(3): e106862.

DOI: PMID: 33399250

15. Meiyu Ke#, Zhiming Ma#, Deyan Wang, Yanbiao Sun, Chenjin Wen, Dingquan Huang, Zichen Chen, Liang Yang, Shutang Tan, Ruixi Li, Jiří Friml, Yansong Miao,* and Xu Chen*. Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana. New Phytologist. 2021. 229(2):963-978.

DOI: PMID: 32901934

14. Hongjiang Li, Daniel von Wangenheim, Xixi Zhang, Shutang Tan, Nasser Darwish-Miranda, Satoshi Naramoto, Krzysztof Wabnik, Riet De Rycke, Walter A. Kaufmann, Daniel Gütl, Ricardo Tejos, Peter Grones, Meiyu Ke, Xu Chen, Jan Dettmer, and Jiří Friml*. Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana. New Phytologist. 2021. 229(1):351-369.  

DOI: PMID: 32810889



13. Shutang Tan, Xixi Zhang, Wei Kong, Xiao-Li Yang, Gergely Molnár, Zuzana Vondráková, Roberta Filepová, Jan Petrášek, Jiří Friml*, and Hong-Wei Xue*. The lipid code-dependent phosphoswitch PDK1-D6PK activates PIN-mediated auxin efflux in Arabidopsis. Nature Plants. 2020, 6(5): 556-569.

DOI: PMID: 32393881

12. Shutang Tan, Melinda Abas, Inge Verstraeten, Matouš Glanc, Gergely Molnár, Jakub Hajný, Pavel Lasák, Ivan Petřík, Eugenia Russinova, Jan Petrášek, Ondřej Novák, Jiří Pospíšil, and Jiří Friml*. Salicylic acid targets Protein Phosphatase 2A to attenuate growth in plants. Current Biology. 2020, 30(3): 381-395.e8.

   DOI: PMID: 31956021.

11. Shutang Tan, Martin Di Donato, Matouš Glanc, Xixi Zhang, Petr Klima, Noel Ferro, Aurélien Bailly, Jan Petrášek, Markus Geisler, and Jiří Friml*. Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated development in plants. Cell Reports. 2020, 30(9): 108463.

DOI: PMID: 33264621

10. Jakub Hajný, Tomáš Prát, Nikola Rydza, Lesia Rodriguez, Shutang Tan, Inge Verstraeten, David Domjan, Ewa Mazur, Elwira Smakowska-Luzan, Wouter Smet, Eliana Mor, Jonah Nolf, BaoJun Yang, Wim Grunewald, Gergely Molnár, Youssef Belkhadir, Bert De Rybel and Jiří Friml*. Receptor kinase module targets PIN-dependent auxin transport during canalization.Science. 2020. 370(6516):550-557.

DOI: PMID: 33122378

9. Xixi Zhang, Maciek Adamowski, Petra Marhava, Shutang Tan, Yuzhou Zhang, Lesia Rodriguez, Marta Zwiewka, Vendula Pukyšová, Adrià Sans Sánchez, Vivek Raxwal, Christian Hardtke, Tomasz Nodzyński, and Jiří Friml*. Arabidopsis flippases cooperate with ARF GTPase Exchange Factors to regulate the trafficking and polarity of PIN auxin transporters. The Plant Cell. 2020, 32(5): 1644-1664.

DOI: PMID: 32193204

8. Madhumitha Narasimhan#, Alexander Johnson#, Roshan Prizak, Walter Anton Kaufmann, Shutang Tan, Barbara Casillas-Pérez, and Jiří Friml*. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife. 2020, 9: e52067.

   DOI: PMID: 31971511.

7. Yang Li#, Yaping Wang#, Shutang Tan, Matouš Glanc, Zhi Yuan, David Domjan, Kai Wang, Zhen Li, Yan Guo, Zhizhong Gong, Jiří Friml and Jing Zhang*. Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex. Advanced Science. 2020, 7(3): 1901455.

DOI:10.1002/advs.201901455. PMID: 32042554.


2019 & before

6. Dingquan Huang#, Yanbiao Sun#, Zhiming Ma#, Meiyu Ke, Yong Cui, Zichen Chen, Chaofan Chen, Changyang Ji, Tuan Minh Tran, Liang Yang, Sin Man Lam, Yanhong Han, Guanghou Shui, Zhuang Wei, Shutang Tan, Kan Liao, Jiří Friml, Yansong Miao, Liwen Jiang, and Xu Chen*. Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organizationPNAS. 2019, 116 (42): 21274-21284.

DOI: PMID: 31575745

5. Marta Zwiewka#, Agnieszka Bielach#, Prashanth Tamizhselvan, Sharmila Madhavan, Eman Elrefaay Ryad, Shutang Tan, Mónika Hrtyan, Petre Dobrev, Rodamira Vaňková, Jiří Friml, and Vanesa B. Tognetti*.Root adaptation to H2O2-induced oxidative stress by ARF-GEF BEN1- and cytoskeleton-mediated PIN2 trafficking. Plant and Cell Physiology. 2019, 60(2): 255-273. (cover).

DOI: PMID: 30668780.

4. Yong Tang#, Chun-Yan Zhao#, Shu-Tang Tan, and Hong-Wei Xue*. Arabidopsis type II Phosphatidylinositol 4-Kinase PI4Kγ5 regulates auxin biosynthesis and leaf margin development through interacting with membrane-bound transcription factor ANAC078. PLoS Genetics. 2016, 12(8): e1006252.

DOI: PMID: 27529511.

3. Shu-Tang Tan, and Hong-Wei Xue*. Casein kinase 1 regulates ethylene synthesis by phosphorylating and promoting the turnover of ACS5. Cell Reports. 2014, 9(5): 1692-1702.

DOI:10.1016/j.celrep.2014.10.047. PMID: 25464840.

2. Shu-Tang Tan, Cheng Dai, Hong-Tao Liu, and Hong-Wei Xue*. Arabidopsis casein kinase1 proteins CK1.3 and CK1.4 phosphorylate cryptochrome2 to regulate blue light signaling. The Plant Cell. 2013, 25(7): 2618-2632.

  DOI: PMID: 23897926.

1. Yong Tang, Shu-Tang Tan, and Hong-Wei Xue*. Arabidopsis inositol 1,3,4-trisphosphate 5/6 kinase 2 is required for seed coat development. Acta Biochimica et Biophysica Sinica. 2013, 45(7): 549-560.

  DOI: PMID: 23595027.



School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China

Lab, No. 363; Office, No. 343



Further Information